Role of HMGB1 in proliferation and migration of human gingival and periodontal ligament fibroblasts.
نویسندگان
چکیده
High mobility group box 1 (HMGB1) was originally defined as a nuclear protein. However, later studies showed that HMGB1 was released from damaged cells into the extracellular milieu and functioned as a danger signaling molecule. HMGB1 has also been shown to exert proliferative and chemoattractant effects on many cell types. In this study, we investigated the in vitro effect of human recombinant HMGB1 on the proliferation and migration of human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). For the proliferation assay, HGF and HPDLF were cultured in the presence of 5, 10, and 50 ng/mL HMGB1. After a period of 6 days, cell proliferation was determined by MTT assay. The migration assay was performed by culturing the two cell types in Transwells with HMGB1 in the lower chamber as a chemoattractant. Cell migration during 16 h was determined by crystal violet staining of the cells that migrated across the membrane. The results showed that HMGB1, at 50 ng/mL, was able to significantly induce proliferation of HGF by up to 171.4 ± 17.1%. No such proliferation induction was seen for HPDLF. In the migration assay, however, 100 ng/mL HMGB1 induced migration of both cell types. The counts of cells that migrated across the membrane, as compared with the control, were increased to 273 ± 24.1% and 410.3 ± 158% for HGF and HPDLF, respectively. Since proliferation and migration are basic abilities of cells required for proper tissue repair, these data suggest that HMGB1 plays an important role in these functions of periodontal cells.
منابع مشابه
The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts
BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...
متن کاملEffects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour
BACKGROUND The use of platelet rich plasma (PRP, GLO) has been used as an adjunct to various regenerative dental procedures. The aim of the present study was to characterize the influence of PRP on human gingival fibroblasts, periodontal ligament (PDL) cells and osteoblast cell behavior in vitro. METHODS Human gingival fibroblasts, PDL cells and osteoblasts were cultured with conditioned medi...
متن کاملAnabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro
High mobility group box protein-1 (HMGB1) is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immu...
متن کاملGingival crevicular fluid can degrade Emdogain and inhibit Emdogain-induced proliferation of periodontal ligament fibroblasts.
BACKGROUND AND OBJECTIVE Emdogain (EMD), consisting mostly of amelogenin, is used in periodontal therapy to regenerate lost connective tissue. Emdogain is applied onto periodontally affected root surfaces, where it becomes exposed to proteolytic enzymes. In this study, we aimed to find out whether gingival crevicular fluid or matrix metalloproteinases (MMPs) could degrade EMD, and whether this ...
متن کاملA comparative study of human periodontal ligament cells and gingival fibroblasts in vitro.
Both periodontal ligament and gingival tissue are thought to harbor cells with the ability to stimulate periodontal regeneration, i.e., formation of new bone, cementum, and connective tissue attachment. To understand further the role of these cells in the regenerative process, we compared human periodontal ligament cells and gingival fibroblasts, both derived from the same patient, same passage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of oral science
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2013